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I. INTRODUCTION

To meet the demand for accelerating applications efficiently,
custom architectures have become a necessity. With the advent
of the open-source RISC-V ISA, architects can now build better
architectures by extending the ISA through custom instructions
and extensions. While custom instructions can significantly
improve processor performance for specific applications, iden-
tifying the right custom instruction along with the right set
of extensions can be challenging and time-consuming. When
multiple candidates exist, it becomes crucial to determine which
custom instruction can provide the highest speedup in terms of
clock cycles. In response, we have developed a profiler to aid
in the identification of extensions and integration of custom
instructions within RISC-V processors.

In this work, we present PARISCV [1], a profiler for finding
and incorporating application-specific extensions, custom in-
structions in a RISC-V processor. Leveraging the VexRiscv [2]
processor, which facilitates the quick and easy inclusion of
custom instructions, we showcase the process of using the
profiler. The profiler takes the trace output from Verilator [3]
simulation of the processor running the application and gen-
erates a list of potential custom instructions. Furthermore, the
profiler provides insights into the cycles that can be saved by
extending the core with custom instructions. By employing this
open-source instruction profiler, the RISC-V community gains
a valuable tool for hardware-software co-design, enabling them
to maximize the performance benefits by tailoring processors
for specific application domains.

II. METHODOLOGY

For application-specific acceleration using PARISCV [1], we
have devised the flow as shown in Figure 1. Our methodology
of application specific acceleration is targeted to VexRiscv [2]
platform. VexRiscv [2] is an FPGA friendly 32 bit RISC-
V CPU implementation that is easily customisable to include
RV32I[M][A][F[D]][C] extensions. A support for extending the
core with custom instructions is available.

PARISCV [1] methodology can be divided into two i.e find-
ing the appropriate extension and tailoring custom instruction.

Finding appropriate extension: This part involves in com-
piling the target application enabling all extensions as provided
by RISC-V tool-chain [4]. The executable generated is simu-
lated through an instruction accurate simulator called Spike [4],
which generates the trace of instructions executed. Based on

this trace, PARISCV suggests extensions that have significant
presence in the target application.

Custom instruction: Next, we generate VexRiscv core sup-
porting the suggested extensions. The application is recompiled
based enabling only the selected extensions. The compiled
executable is run on the cycle-accurate VexRiscv using Verila-
tor [3]. The trace generated through cycle-accurate simulation
is then fed into PARISCV for identifying the potential custom
instruction that might accelerate the application. The output of
PARISCV comprises a set of instructions poised for conversion
into custom instructions, tailored to enhance application per-
formance. Additionally, the package generates files containing
statistics such as the theoretical cycles saved through the
conversion to cycle-accurate information, alongside other mis-
cellaneous data like the percentage constituency of instructions
within the application. To ascertain the actual speedup, the
provided custom instructions are integrated into the VexRiscv
platform through hand written HDL code.The application is
then modified to include custom instruction through inline
assembly. The code involving custom instructions is recompiled
and run on the VexRiscv equipped with required extensions,
custom instructions. This way, one can accelerate application
by hardware-software co-design. Through this process, perfor-
mance impact and area utilization of the custom instructions
can be gathered providing further insights in the process of
acceleration. This methodology represents a systematic ap-
proach to analyzing and optimizing application performance
by harnessing instruction and cycle-accurate information for
tailoring the RISC-V core.

III. EXPERIMENTAL SETUP

Our experiments are carried out using six widely used appli-
cations from the Embench benchmark suite [5] and attempting
to accelerate them on the VexRiscv [2] platform. RISC-V
toolchain [4] is used for compilation and instruction accurate
simulation. Verilator [3] is used for cycle accurate simulation
and generating trace file (.fst file) of VexRiscv. Runtime of the
application is adjusted by varying the iteration count for quick
cycle accurate simulations. We modify the GDBwave [6] that is
used for post-simulation waveform-based RISC-V GDB server
to extract the necessary signals from the trace generated by
Verilator. PARISCV [1] is a software written using python and
the entire flow as described in Figure 1 is automated using
bash script. Currently the search space of custom instruction
in PARISCV is set to instruction window size of 2 and 3. We



Fig. 1: PARISCV [1] flow.

use Xilinx Vivado 2022.1 [7] for synthesizing VexRiscv cores
targeting XC7A100TCSG324 FPGA device.

IV. RESULTS

Figure 2 shows the speedup obtained using appropriate
extension and custom instructions as compared to baseline
i.e VexRiscv core with RV32I implementation. We observe
all applications except huffbench performing better than the
baseline by including M (Multiplication/Division) extension
as suggested by PARISCV. For huffbench, PARISCV suggest
other extensions are not necessary, that otherwise would have
incurred extra area (2.38× than baseline if we include M and
F extensions). A maximum speedup of 22.3× is seen for edn.
crc32 and picojpeg benefited from custom instruction further by
34% and 16% as compared to speedup after extension selection.
PARISCV also suggests MAC (multiply-add) instruction as a
custom instruction for further speedup of matmult-int and edn
but due to limited number of source operands, we weren’t able
to realise it. For the rest of the applications, we weren’t able
to find a feasible custom instruction that can provide desired
acceleration. We also tabulate the extra area due to extension +
custom instruction (E+C) and speedup achieved for added area
(in terms of LUTs) ratio in Table I. From the table, we observe
with minimal increase in the area we are able to significantly
accelerate the applications.

Application Extension Area (E+C) Speedup / Area
(E) LUT FF DSP

crc32 I, M 1.20× 1.14× 7× 1.79
aha-mont64 I, M 1.19× 1.14× 4× 2.08
edn I, M 1.19× 1.14× 4× 18.74
huffbench I 1× 1× 1× 1
matmult-int I, M 1.19× 1.14× 4× 7.33
picojpeg I, M 1.27× 1.14× 4× 1.03

TABLE I: Speedup and area as compared to RV32I core for
different applications of Embench [5].

V. CONCLUSION AND FUTURE WORK

In conclusion, the PARISCV methodology presents a system-
atic approach to analyze and optimize application performance

Fig. 2: Speedup obtained for using extensions and custom
instructions as suggested by PARISCV.

within the RISC-V architecture. Through this work, we were
able to efficiently accelerate six Embench applications by
enabling the necessary extensions and custom instructions.
Although for our target applications, we weren’t able to
find custom instruction that provide significant acceleration
as compared to extension selection, the methodology serves
as a valuable resource for application-specific RISC-V based
acceleration. Future work involves, extended PARISCV to
suggest subset of instructions from an extension. We also intend
to explore accelerating through coarse grained accelerators by
varying the window size of search space in PARISCV.
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